
Audit Report
Maven
April 2023

Network ETH

Address 0xCB245dF5BE6C263ce770951dC5650d278E6051da

Audited by © cyberscope

Maven Token Audit 1

Table of Contents
Table of Contents 1
Review 2

Audit Updates 2
Source Files 2

Findings Breakdown 3
Analysis 4
Diagnostics 5

PVC - Price Volatility Concern 6
Description 6
Recommendation 6

L04 - Conformance to Solidity Naming Conventions 7
Description 7
Recommendation 8

L05 - Unused State Variable 9
Description 9
Recommendation 9

L07 - Missing Events Arithmetic 10
Description 10
Recommendation 10

L12 - Using Variables before Declaration 11
Description 11
Recommendation 11

L14 - Uninitialized Variables in Local Scope 12
Description 12
Recommendation 12

Functions Analysis 13
Inheritance Graph 18
Flow Graph 19
Summary 20
Disclaimer 21
About Cyberscope 22

Maven Token Audit 2

Review

Contract Name Maven

Compiler Version v0.8.15+commit.e14f2714

Optimization 5000 runs

Explorer https://etherscan.io/address/0xcb245df5be6c263ce770951dc56

50d278e6051da

Address 0xcb245df5be6c263ce770951dc5650d278e6051da

Network ETH

Symbol MVN

Decimals 18

Total Supply 1,000,000,000

Audit Updates

Initial Audit 12 Apr 2023

Source Files

Filename SHA256

Maven.sol 5d1c3daf525560d394b19f60bc62cf5ba1f629517140757fe83491941d1

1faa3

https://etherscan.io/address/0xcb245df5be6c263ce770951dc5650d278e6051da
https://etherscan.io/address/0xcb245df5be6c263ce770951dc5650d278e6051da

Maven Token Audit 3

Findings Breakdown

⬤ Critical 0

⬤ Medium 0

⬤ Minor / Informative 6

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 0

⬤ Medium 0 0 0 0

⬤ Minor / Informative 6 0 0 0

Maven Token Audit 4

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions Passed

⬤ OCTD Transfers Contract's Tokens Passed

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ ULTW Transfers Liquidity to Team Wallet Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

Maven Token Audit 5

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ PVC Price Volatility Concern Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L05 Unused State Variable Unresolved

⬤ L07 Missing Events Arithmetic Unresolved

⬤ L12 Using Variables before Declaration Unresolved

⬤ L14 Uninitialized Variables in Local Scope Unresolved

Maven Token Audit 6

PVC - Price Volatility Concern

Criticality Minor / Informative

Location Maven.sol#L456

Status Unresolved

Description

The contract accumulates tokens from the taxes to swap them for ETH. The variable

swapAmount sets a threshold where the contract will trigger the swap functionality. If the

variable is set to a big number, then the contract will swap a huge amount of tokens for

ETH.

It is important to note that the price of the token representing it, can be highly volatile. This

means that the value of a price volatility swap involving Ether could fluctuate significantly at

the triggered point, potentially leading to significant price volatility for the parties involved.

function setSwapSettings(uint256 thresholdPercent, uint256

thresholdDivisor, uint256 amountPercent, uint256 amountDivisor) external

onlyOwner {

swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor;

swapAmount = (_tTotal * amountPercent) / amountDivisor;

require(swapThreshold <= swapAmount, "Threshold cannot be above

amount.");

}

Recommendation

The contract could ensure that it will not sell more than a reasonable amount of tokens in a

single transaction. A suggested implementation could check that the maximum amount

should be less than a fixed percentage of the total supply. Hence, the contract will

guarantee that it cannot accumulate a huge amount of tokens in order to sell them.

Maven Token Audit 7

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location Maven.sol#L33,122,124,125,126,127,142,149,155,156,157,158,159,170,1
98,400

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

Maven Token Audit 8

function WETH() external pure returns (address);

uint256 constant private startingSupply = 1_000_000_000

string constant private _name = "Maven"

string constant private _symbol = "MVN"

uint8 constant private _decimals = 18

uint256 constant private _tTotal = startingSupply * 10**_decimals

Fees public _taxRates = Fees({

buyFee: 400,

sellFee: 700,

sellHighTxFee: 1000,

transferFee: 1000

})

...

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

Maven Token Audit 9

L05 - Unused State Variable

Criticality Minor / Informative

Location Maven.sol#L108

Status Unresolved

Description

An unused state variable is a state variable that is declared in the contract, but is never

used in any of the contract's functions. This can happen if the state variable was originally

intended to be used, but was later removed or never used.

Unused state variables can create clutter in the contract and make it more difficult to

understand and maintain. They can also increase the size of the contract and the cost of

deploying and interacting with it.

mapping (address => uint256) private _rOwned

Recommendation

To avoid creating unused state variables, it's important to carefully consider the state

variables that are needed for the contract's functionality and to remove any that are no

longer needed. This can help improve the clarity and efficiency of the contract.

Maven Token Audit 10

L07 - Missing Events Arithmetic

Criticality Minor / Informative

Location Maven.sol#L439,445,457,464,475,494,499

Status Unresolved

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that

all required events are included. It's also a good idea to test the contract to ensure that all

events are being properly triggered and logged.

_maxTxAmountBuy = (_tTotal * percentBuy) / divisorBuy

_maxWalletSize = (_tTotal * percent) / divisor

swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor

piSwapPercent = priceImpactSwapPercent

_highTaxSize = (_tTotal * percent) / divisor

burnXLimit = (_tTotal * percent) / divisor

burnXTimer = timeInMinutes * 1 minutes

Recommendation

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues with its arithmetic.

Maven Token Audit 11

L12 - Using Variables before Declaration

Criticality Minor / Informative

Location Maven.sol#L707

Status Unresolved

Description

The contract is using a variable before the declaration. This is usually happening either if it

has not been declared yet or if the variable has been declared in a different scope. It is not a

good practice to use a local variable before it has been declared.

bool check

Recommendation

By declaring local variables before using them, the contract ensures that it operates

correctly. It's important to be aware of this rule when working with local variables, as using

a variable before it has been declared can lead to unexpected behavior and can be difficult

to debug.

Maven Token Audit 12

L14 - Uninitialized Variables in Local Scope

Criticality Minor / Informative

Location Maven.sol#L706,707

Status Unresolved

Description

Using an uninitialized local variable can lead to unpredictable behavior and potentially

cause errors in the contract. It's important to always initialize local variables with

appropriate values before using them.

bool checked

bool check

Recommendation

By initializing local variables before using them, the contract ensures that the functions

behave as expected and avoid potential issues.

Maven Token Audit 13

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

IERC20 Interface

totalSupply External -

decimals External -

symbol External -

name External -

getOwner External -

balanceOf External -

transfer External ✓ -

allowance External -

approve External ✓ -

transferFrom External ✓ -

IFactoryV2 Interface

getPair External -

createPair External ✓ -

IV2Pair Interface

factory External -

Maven Token Audit 14

getReserves External -

sync External ✓ -

IRouter01 Interface

factory External -

WETH External -

addLiquidityETH External Payable -

addLiquidity External ✓ -

swapExactETHForTokens External Payable -

getAmountsOut External -

getAmountsIn External -

IRouter02 Interface IRouter01

swapExactTokensForETHSupportingFee
OnTransferTokens

External ✓ -

swapExactETHForTokensSupportingFee
OnTransferTokens

External Payable -

swapExactTokensForTokensSupporting
FeeOnTransferTokens

External ✓ -

swapExactTokensForTokens External ✓ -

AntiSnipe Interface

checkUser External ✓ -

setLaunch External ✓ -

setLpPair External ✓ -

setProtections External ✓ -

Maven Token Audit 15

removeSniper External ✓ -

removeBlacklisted External ✓ -

isBlacklisted External -

setBlacklistEnabled External ✓ -

setBlacklistEnabledMultiple External ✓ -

setBlockTXDelay External ✓ -

Maven Implementation IERC20

Public Payable -

External Payable -

transferOwner External ✓ onlyOwner

renounceOwnership External ✓ onlyOwner

totalSupply External -

decimals External -

symbol External -

name External -

getOwner External -

allowance External -

balanceOf Public -

transfer Public ✓ -

approve External ✓ -

_approve Internal ✓

approveContractContingency External ✓ onlyOwner

Maven Token Audit 16

transferFrom External ✓ -

setNewRouter External ✓ onlyOwner

setLpPair External ✓ onlyOwner

setInitializer External ✓ onlyOwner

isExcludedFromLimits External -

isExcludedFromFees External -

isExcludedFromProtection External -

setExcludedFromLimits External ✓ onlyOwner

setExcludedFromFees Public ✓ onlyOwner

setExcludedFromProtection External ✓ onlyOwner

setBlacklistEnabled External ✓ onlyOwner

setBlacklistEnabledMultiple External ✓ onlyOwner

isBlacklisted External -

removeSniper External ✓ onlyOwner

setProtectionSettings External ✓ onlyOwner

setBlockTXDelay External ✓ onlyOwner

setTaxes External ✓ onlyOwner

setRatios External ✓ onlyOwner

setWallets External ✓ onlyOwner

setMaxTxPercents External ✓ onlyOwner

setMaxWalletSize External ✓ onlyOwner

getMaxTX External -

getMaxWallet External -

Maven Token Audit 17

setSwapSettings External ✓ onlyOwner

setPriceImpactSwapAmount External ✓ onlyOwner

setContractSwapEnabled External ✓ onlyOwner

setHigherTaxSize External ✓ onlyOwner

getHigherTaxSize External -

setBurnXHolder Public ✓ onlyOwner

setBurnXHolderMulti External ✓ onlyOwner

setBurnXPercent External ✓ onlyOwner

setBurnXTimer External ✓ onlyOwner

getBurnXHolderValues External -

getBurnXSellLimit External -

excludePresaleAddresses External ✓ onlyOwner

_hasLimits Internal

_transfer Internal ✓

contractSwap Internal ✓ lockTheSwap

_checkLiquidityAdd Internal ✓

enableTrading Public ✓ onlyOwner

sweepContingency External ✓ onlyOwner

multiSendTokens External ✓ onlyOwner

multiSendBurnXHolders External ✓ onlyOwner

finalizeTransfer Internal ✓

takeTaxes Internal ✓

Maven Token Audit 18

Inheritance Graph

Maven Token Audit 19

Flow Graph

Maven Token Audit 20

Summary
Maven contract implements a token mechanism. This audit investigates security issues,

business logic concerns, and potential improvements. Maven is an interesting project that

has a friendly and growing community. The Smart Contract analysis reported no compiler

error or critical issues. The contract Owner can access some admin functions that can not

be used in a malicious way to disturb the users’ transactions. There is also a limit of max

15% buy, sell, and transfer fees.

Maven Token Audit 21

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

Maven Token Audit 22

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

https://www.cyberscope.io

https://www.cyberscope.io

